. .

 | 
 

  2

   
rayane_fcb

avatar

: 400
: 4085
: 14/01/2011
: 25

: 2     9 2011 - 11:43


1

1. (un) u0=1 r=4
o u3,u2,u1
o un u19
(vn) v0=2 q=3
v3,v2,v1
vn n v10
S=v0+v1+...+v9

2

(un)n∈ℕ un=2−3n2+1 . (un)n∈ℕ

3

(un)n∈ℕ u0=8 q=12
1. u20,u2,u1
2. S=u0+u1+...u20 221−1217

4

(un) u0=1 un+1=2un2+3un
1. u2,u1
2. (un) ɿɿ
3. n ℕ un≠0 . vn=1+2un
o v2,v1,v0
o vn+1 vn . (vn) .
o vn n un

5

(un) (vn) n ℕ : un=32n−4n+32 vn=32n+4n−32

1. (wn) : wn=un+vn . (wn) .
2. (tn) : tn=un−vn . (tn) .
3. nSn=u0+u1+...+un

6

(un) : u0=1 un+1=un+1 n ℕ.
1. 1
2. 2
3. ̿
4. f:x↦x+1 . f (un)


7

:
n ℕ : 13+23+33+...+n3=(1+2+3+...+n)2

8

1. (vn) : {v0=1vn+1=vn+2(n+1)(∀n∈ℕ)
o v3,v2,v1 v4
o : vn=n2+n+1 n ℕ
:
1=1;3+1=2;7+3+1=3;13+7+3+1=4......
(un) : {u1=1un+1=vn+un(∀n∈ℕ)
un=n n ℕ

    
 
2
    
1 1

:
 ::   ::  -